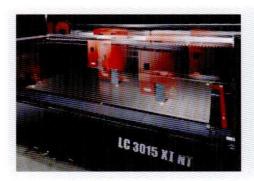
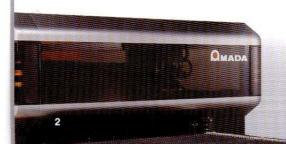


I punti salienti

Elevata Produttività


Il sistema di taglio laser **LC 3015 X1** sfrutta la tecnologia statica del sensore capacitivo **Amada**. Riesce infatti ad eseguire la produzione sfruttando l'effetto del plasma. Questo permette d'ottenere elevate velocità di taglio e ottimi livelli di finitura.

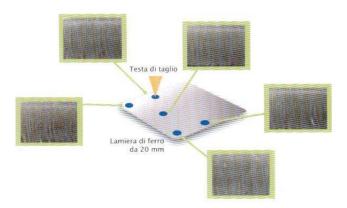
Gli interventi necessari da parte dell'operatore in fase di tools set up sono molto limitati; questo aumenta in modo esponenziale il rendimento dell'impianto.


Costanza di Rendimento

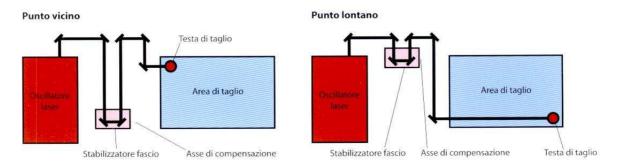
L'obiettivo della tecnologia **LC 3015 X1** è quello di garantire elevata competitività sia con grandi produzioni, sia con lotti di particolari contenuti e non ripetitivi. Il raggiungimento di questo risultato è garantito dal sistema di gestione intelligente di **Amada** denominato **ICC** (**Intelligent Cut Control**). L'impianto di autolubrificazione delle parti meccaniche, garantisce longevità e precisione nel tempo di tutti i componenti in movimento.

Solidità Strutturale

L'intagliatrice laser **LC 3015 X1** è realizzata con un frame di ghisa normalizzata in forno sigillato e successivamente lavorata all'utensile. La geometricità dei particolari tagliati è assicurata dalla cura maniacale impiegata durante l'assemblaggio delle parti meccaniche. I severi controlli di qualità a cui è sottoposto ogni impianto è sinonimo di affidabilità nel tempo. La longevità di guide, pignoni e cremagliere è garantita da lavorazioni realizzate con centri di lavoro ad alta precisione.



Qualità e Rendimento

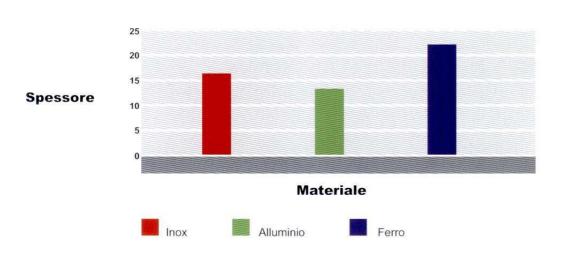


Il problema principale della tecnologia laser ad ottica volante è il trasporto del fascio.

Amada ha inserito in **LC 3015 X1** un sistema di compensazione della divergenza che permette d'ottenere elevate prestazioni ed ottime qualità di taglio su tutta la tavola di lavoro.

La distanza fra la sorgente laser e la lente di taglio rimane costante come descritto nella figura 1.

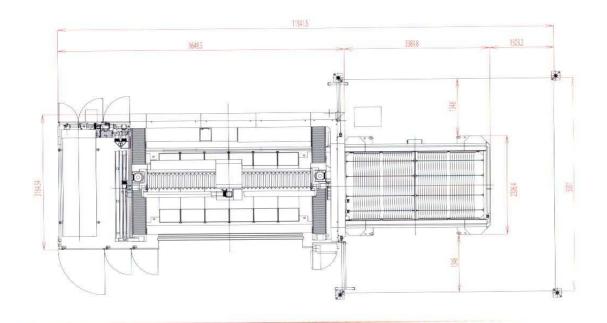
Fig. 1

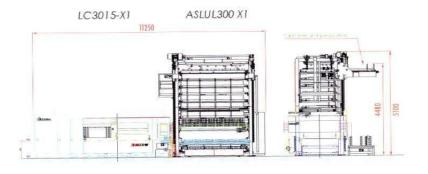

La compensazione del fascio è garantita da un asse vero e proprio che viene opportunamente movimentato dal **CNC**. In base alla posizione della testa laser sulla tavola di lavoro, l'asse di compensazione viene spostato in positivo o in

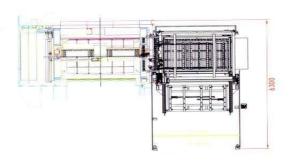
La dimensione del fascio e la posizione del punto focale durante il taglio sono costanti e garantiti.

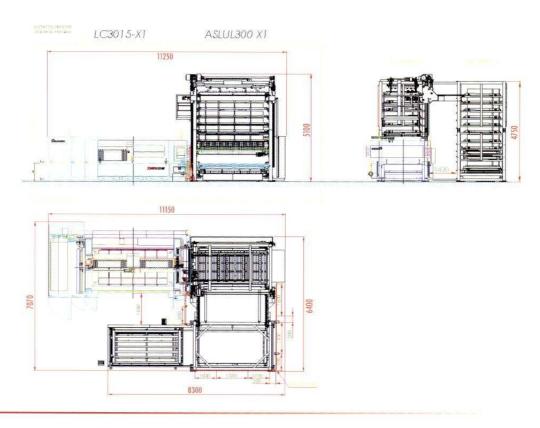
LC 3015 XI NT

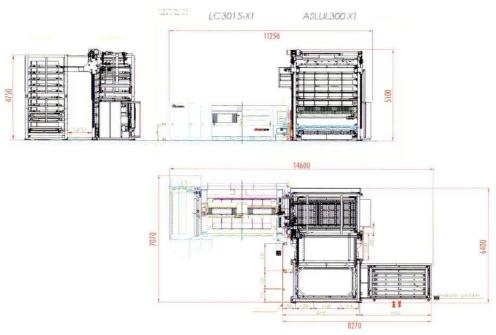
Le specifiche




LC 3015 X1 NT


Macchina		Sorgente Laser	
Tipo	LC 3015 X1 NT	Tipo	40 CFX
Metodo azionamento assi	Ottica volante (movimento fascio a 3 assi)	Eccitazione	Flusso incrociato a 3 assi, eccitaz. gas SD (Scarico Silenzioso)
Metodo di controllo	Controllo simultaneo assi X-Y-Z	Potenza (W)	4000
Max area di lavoro	3050 x 1526 x 100 mm	Potenza picco impulso (W)	Max 5000
Altezza tavolo (mm)	850	Stabilità potenza (%)	± 1
Cambio pallet	Standard	Cambio regolazione potenza (%)	Da 0 a 100 (potenza misurata)
Velocità rapido (m/min)	Max 85 (assi X e Y)	Gas laser	Gas premiscelato di 4 tipi
Velocità max (m/min)	Max 30 (assi X e Y)	Consumo gas laser (NL/h)	Circa 3
Precisione posizionamento	0,05/500 mm (assi X e Y)	Sensore potenza alta velocità	Tempo risposta sensore: 0,3 sec
Ripetibilità (mm)	± 0,01 (assi X e Y)	Controller CNC	
Sensore asse Z	Tipo statico	Unità visualizzazione	TFT da 10,4" (con pannello sensibile)
Scelta gas di assistenza	Da CN	Capacità utente drive hard disk	2 GB
Scelta tipo gas di assistenza	Disponibili 3 tipi a CN	Capacità di memoria programmi	5000 m (circa 2 MB)


I lay out



LC 3015 XI NI

